160 research outputs found

    A comprehensive look at the covid-19 pandemic death toll

    Get PDF
    COVID-19 ‘excess mortality’ has been estimated for more than 100 countries and shows a dramatic death toll in many countries

    Impact of School Cycles and Environmental Forcing on the Timing of Pandemic Influenza Activity in Mexican States, May-December 2009

    Get PDF
    While a relationship between environmental forcing and influenza transmission has been established in inter-pandemic seasons, the drivers of pandemic influenza remain debated. In particular, school effects may predominate in pandemic seasons marked by an atypical concentration of cases among children. For the 2009 A/H1N1 pandemic, Mexico is a particularly interesting case study due to its broad geographic extent encompassing temperate and tropical regions, well-documented regional variation in the occurrence of pandemic outbreaks, and coincidence of several school breaks during the pandemic period. Here we fit a series of transmission models to daily laboratory-confirmed influenza data in 32 Mexican states using MCMC approaches, considering a meta-population framework or the absence of spatial coupling between states. We use these models to explore the effect of environmental, school–related and travel factors on the generation of spatially-heterogeneous pandemic waves. We find that the spatial structure of the pandemic is best understood by the interplay between regional differences in specific humidity (explaining the occurrence of pandemic activity towards the end of the school term in late May-June 2009 in more humid southeastern states), school vacations (preventing influenza transmission during July- August in all states), and regional differences in residual susceptibility (resulting in large outbreaks in early fall 2009 in central and northern Mexico that had yet to experience fullydeveloped outbreaks). Our results are in line with the concept that very high levels of specific humidity, as present during summer in southeastern Mexico, favor influenza transmission, and that school cycles are a strong determinant of pandemic wave timing

    The Western Africa Ebola Virus Disease Epidemic Exhibits Both Global Exponential and Local Polynomial Growth Rates

    Get PDF
    Background: While many infectious disease epidemics are initially characterized by an exponential growth in time, we show that district-level Ebola virus disease (EVD) outbreaks in West Africa follow slower polynomial-based growth kinetics over several generations of the disease. Methods: We analyzed epidemic growth patterns at three different spatial scales (regional, national, and subnational) of the Ebola virus disease epidemic in Guinea, Sierra Leone and Liberia by compiling publicly available weekly time series of reported EVD case numbers from the patient database available from the World Health Organization website for the period 05-Jan to 17-Dec 2014. Results: We found significant differences in the growth patterns of EVD cases at the scale of the country, district, and other subnational administrative divisions. The national cumulative curves of EVD cases in Guinea, Sierra Leone, and Liberia show periods of approximate exponential growth. In contrast, local epidemics are asynchronous and exhibit slow growth patterns during 3 or more EVD generations, which can be better approximated by a polynomial than an exponential function. Conclusions: The slower than expected growth pattern of local EVD outbreaks could result from a variety of factors, including behavior changes, success of control interventions, or intrinsic features of the disease such as a high level of clustering. Quantifying the contribution of each of these factors could help refine estimates of final epidemic size and the relative impact of different mitigation efforts in current and future EVD outbreaks

    Rates of Influenza-like Illness and Winter School Breaks, Chile, 2004–2010

    Get PDF
    To determine effects of school breaks on influenza virus transmission in the Southern Hemisphere, we analyzed 2004–2010 influenza-like–illness surveillance data from Chile. Winter breaks were significantly associated with a two-thirds temporary incidence reduction among schoolchildren, which supports use of school closure to temporarily reduce illness, especially among schoolchildren, in the Southern Hemisphere

    Risk Factors for Mortality among 2009 A/H1N1 Influenza Hospitalizations in Maricopa County, Arizona, April 2009 to March 2010

    Get PDF
    We analyzed individual-level data on pandemic influenza A/H1N1pdm hospitalizations from the enhanced surveillance system of the Maricopa County Department of Public Health, AZ, USA from April 1st, 2009 to March 31st, 2010. We also assessed the the risk of death among A/H1N1 hospitalizations using multivariate logistic regression. Hospitalization rates were significantly higher among Native Americans (risk ratio (RR) = 6.2; 95% CI: 6.15, 6.21), non-Hispanic Black (RR = 3.84; 95% CI: 3.8, 3.9), and Hispanics (RR = 2.0; 95% CI: 2.0, 2.01) compared to non-HispanicWhites. Throughout the spring, 59.2% of hospitalized patients received antiviral treatment; the proportion of patients treated increased significantly during the fall to 74.4% (Chi-square test, P \u3c 0.0001). In our best-fit logisticmodel, the adjusted risk of death among A/H1N1 inpatients was significantly higher during the fall wave (August 16, 2009 toMarch 31, 2010, OR = 3.94; 95% CI: 1.72, 9.03) compared to the spring wave (April 1, 2009 to August 15, 2009). Moreover, chronic lung disease (OR = 3.5; 95% CI: 1.7, 7.4), cancer within the last 12 months (OR = 4.3; 95%CI: 1.3, 14.8), immuno-suppression (OR = 4.0; 95% CI: 1.84, 8.9), and admission delays (OR = 4.6; 95% CI: 2.2, 9.5) were significantly associated with an increased the risk of death among A/H1N1 inpatients

    Death Patterns during the 1918 Influenza Pandemic in Chile

    Get PDF
    Scarce information about the epidemiology of historical influenza pandemics in South America prevents complete understanding of pandemic patterns throughout the continent and across different climatic zones. To fill gaps with regard to spatiotemporal patterns of deaths associated with the 1918 influenza pandemic in Chile, we reviewed archival records. We found evidence that multiple pandemic waves at various times of the year and of varying intensities occurred during 1918–1921 and that influenza-related excess deaths peaked during July–August 1919. Pandemic-associated mortality rates were elevated for all age groups, including for adults \u3e50 years of age; elevation from baseline was highest for young adults. Overall, the rate of excess deaths from the pandemic was estimated at 0.94% in Chile, similar to rates reported elsewhere in Latin America, but rates varied ≈10-fold across provinces. Patterns of death during the pandemic were affected by variation in host-specific susceptibility, population density, baseline death rate, and climate

    Transmission potential of influenza A/H7N9, February to May 2013, China

    Get PDF
    Background On 31 March 2013, the first human infections with the novel influenza A/H7N9 virus were reported in Eastern China. The outbreak expanded rapidly in geographic scope and size, with a total of 132 laboratory-confirmed cases reported by 3 June 2013, in 10 Chinese provinces and Taiwan. The incidence of A/H7N9 cases has stalled in recent weeks, presumably as a consequence of live bird market closures in the most heavily affected areas. Here we compare the transmission potential of influenza A/H7N9 with that of other emerging pathogens and evaluate the impact of intervention measures in an effort to guide pandemic preparedness. Methods We used a Bayesian approach combined with a SEIR (Susceptible-Exposed-Infectious-Removed) transmission model fitted to daily case data to assess the reproduction number (R) of A/H7N9 by province and to evaluate the impact of live bird market closures in April and May 2013. Simulation studies helped quantify the performance of our approach in the context of an emerging pathogen, where human-to-human transmission is limited and most cases arise from spillover events. We also used alternative approaches to estimate R based on individual-level information on prior exposure and compared the transmission potential of influenza A/H7N9 with that of other recent zoonoses. Results Estimates of R for the A/H7N9 outbreak were below the epidemic threshold required for sustained human-to-human transmission and remained near 0.1 throughout the study period, with broad 95% credible intervals by the Bayesian method (0.01 to 0.49). The Bayesian estimation approach was dominated by the prior distribution, however, due to relatively little information contained in the case data. We observe a statistically significant deceleration in growth rate after 6 April 2013, which is consistent with a reduction in A/H7N9 transmission associated with the preemptive closure of live bird markets. Although confidence intervals are broad, the estimated transmission potential of A/H7N9 appears lower than that of recent zoonotic threats, including avian influenza A/H5N1, swine influenza H3N2sw and Nipah virus. Conclusion Although uncertainty remains high in R estimates for H7N9 due to limited epidemiological information, all available evidence points to a low transmission potential. Continued monitoring of the transmission potential of A/H7N9 is critical in the coming months as intervention measures may be relaxed and seasonal factors could promote disease transmission in colder months

    Characterizing Ebola Transmission Patterns based on Internet News Reports.

    Get PDF
    BACKGROUND:  Detailed information on patient exposure, contact patterns, and discharge status, is rarely available in real time from traditional surveillance systems in the context of an emerging infectious disease outbreak. Here we validate the systematic collection of Internet news reports to characterize epidemiological patterns of Ebola virus disease (EVD) infections during the West African 2014-2015 outbreak. METHODS:  Based on 58 news reports, we analyzed a total of 79 EVD clusters (286 cases) of size ranging from 1 to 33 cases between January 2014 and February 2015 in Guinea, Sierra Leone and Liberia. RESULTS AND CONCLUSIONS:  The great majority of reported exposures stemmed from contact with family members (57.3%) followed by hospitals (18.2%) and funerals (12.7%). Our data indicated that funeral exposure was significantly more frequent in Sierra Leone (27.3%) followed by Guinea (18.2%) and Liberia (1.8%) (Chi-square test;

    Global Mortality Impact of the 1957–1959 Influenza Pandemic

    Get PDF
    Background. Quantitative estimates of the global burden of the 1957 influenza pandemic are lacking. Here we fill this gap by modeling historical mortality statistics. Methods. We used annual rates of age- and cause-specific deaths to estimate pandemic-related mortality in excess of background levels in 39 countries in Europe, the Asia-Pacific region, and the Americas. We modeled the relationship between excess mortality and development indicators to extrapolate the global burden of the pandemic. Results. The pandemic-associated excess respiratory mortality rate was 1.9/10 000 population (95% confidence interval [CI], 1.2–2.6 cases/10 000 population) on average during 1957–1959. Excess mortality rates varied 70-fold across countries; Europe and Latin America experienced the lowest and highest rates, respectively. Excess mortality was delayed by 1–2 years in 18 countries (46%). Increases in the mortality rate relative to baseline were greatest in school-aged children and young adults, with no evidence that elderly population was spared from excess mortality. Development indicators were moderate predictors of excess mortality, explaining 35%–77% of the variance. Overall, we attribute 1.1 million excess deaths (95% CI, .7 million–1.5 million excess deaths) globally to the 1957–1959 pandemic. Conclusions. The global mortality rate of the 1957–1959 influenza pandemic was moderate relative to that of the 1918 pandemic but was approximately 10-fold greater than that of the 2009 pandemic. The impact of the pandemic on mortality was delayed in several countries, pointing to a window of opportunity for vaccination in a future pandemic. Keywords. mortality rates; pandemic influenza; historical studies; vital statistics; severity; models; global disease burden; development indicators; health indicators; pandemic planning

    Mortality burden of the 2009 A/H1N1 influenza pandemic in France: Comparison to seasonal influenza and the A/H3N2 pandemic

    Get PDF
    Background The mortality burden of the 2009 A/H1N1 pandemic remains unclear in many countries due to delays in reporting of death statistics. We estimate the age- and cause-specific excess mortality impact of the pandemic in France, relative to that of other countries and past epidemic and pandemic seasons. Methods We applied Serfling and Poisson excess mortality approaches to model weekly age- and cause-specific mortality rates from June 1969 through May 2010 in France. Indicators of influenza activity, time trends, and seasonal terms were included in the models. We also reviewed the literature for country-specific estimates of 2009 pandemic excess mortality rates to characterize geographical differences in the burden of this pandemic. Results The 2009 A/H1N1 pandemic was associated with 1.0 (95% Confidence Intervals (CI) 0.2–1.9) excess respiratory deaths per 100,000 population in France, compared to rates per 100,000 of 44 (95% CI 43–45) for the A/H3N2 pandemic and 2.9 (95% CI 2.3–3.7) for average inter-pandemic seasons. The 2009 A/H1N1 pandemic had a 10.6-fold higher impact than inter-pandemic seasons in people aged 5–24 years and 3.8-fold lower impact among people over 65 years. Conclusions The 2009 pandemic in France had low mortality impact in most age groups, relative to past influenza seasons, except in school-age children and young adults. The historical A/H3N2 pandemic was associated with much larger mortality impact than the 2009 pandemic, across all age groups and outcomes. Our 2009 pandemic excess mortality estimates for France fall within the range of previous estimates for high-income regions. Based on the analysis of several mortality outcomes and comparison with laboratory-confirmed 2009/H1N1 deaths, we conclude that cardio-respiratory and all-cause mortality lack precision to accurately measure the impact of this pandemic in high-income settings and that use of more specific mortality outcomes is important to obtain reliable age-specific estimates
    corecore